Teacher notes
 Topic D

Induced emf in a rotating coil

The loop of area A is rotating in magnetic field B with angular speed ω. At the position shown the flux through the loop is zero.

In general, the flux will be given by $\Phi=B A \cos (\omega t)$ and so the induced emf in the loop will be $\varepsilon=-\frac{d \Phi}{d t}=B A \omega \sin (\omega t)$. The maximum induced emf is thus $\varepsilon_{\max }=B A \omega$. How can we get this result without calculus?

The sides PQ and RS of the loop have angular speed ω and so linear speed $v=\omega R$ where R is the distance of the sides from the axis of rotation. This is given by $R=\frac{b}{2}$ and so $v=\frac{\omega b}{2}$.

Think of the "rod" PQ that moves with speed v cutting magnetic field lines. We know that in this case there is a motional emf $B v L$. Thus the induced emf across PQ is $\varepsilon_{\mathrm{PQ}}=B v a=B \frac{\omega b}{2} a=\frac{B \omega A}{2}$. End P is positive and end Q is negative. This means the induced current is from Q to P (right red arrow).

Across RS , similarly, it is $\varepsilon_{\mathrm{RS}}=B v a=B \frac{\omega b}{2} a=\frac{B \omega A}{2}$. End R is negative and end S is positive. This means the induced current is from R to S (left red arrow). The current flows in the same sense in the loop which means that the total induced emf is $\varepsilon_{\text {total }}=\frac{B \omega A}{2}+\frac{B \omega A}{2}=B \omega A$ just as we found before.

